JVC

SERVICE MANUAL CASSETTE RECEIVER

KS-LX200R

Contents

Safety precaution 1-2
Disassembly method 1-3
Adjustment method 1-13
Description of major ICs 1-17

Safety precaution

CAUTION Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

Disassembly method

Removing the top chassis

(See Fig. 1 to 5)

1. Remove the two screws \mathbf{A} attaching the bottom cover to the top chassis on the bottom of the body.
2. Remove the two screws \mathbf{B} attaching the top chassis on both sides of the body.
3. Remove the screw \mathbf{C} and the three screws \mathbf{D} attaching the heat sink on the left side of the body.
4. Remove the two screws \mathbf{E} and the screw \mathbf{F} on the back of the body.
5. Remove the two screws \mathbf{G} on the upper side of the body.
6. Move the top chassis upward and disconnect the cassette mechanism connector from the main board connector by pulling it. Remove the top chassis from the body.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Removing the main board assembly

(See Fig. 6 to 8)

- Prior to performing the following procedure, remove the top chassis.

1. Remove the screw \mathbf{S} attaching the bracket (L).
2. Disconnect the flexible harness from connector CN701, the card wire from CN702 on the main board and the harness from CN503 and CN504 respectively.
3. Remove the three screws \mathbf{H} attaching the main board assembly to the bottom cover on the upper side of the body.
4. Remove the screw I attaching the rear panel and the bottom cover on the back of the body. Move the main board in the direction of the arrow and release the two joints a. (At this point, the main board can be removed with the rear panel and the rear heat sink.)
5. Remove the screw \mathbf{J} and the two screws \mathbf{K} attaching the rear heat sink on the back of the body.
6. Remove the two screws \mathbf{L} and the screw \mathbf{M} attaching the rear panel. Now, the main board assembly will be removed.

ATTENTION: When reassembling, correctly engage the switch S561 and S562 on the main board with the part \mathbf{e} of the operation assembly (Refer to Fig.7, 18 and 19).

Fig. 6

Fig. 7

Fig. 8

Removing the front panel assembly (See Fig. 9 to 11)

- Prior to performing the following procedure, remove the top chassis assembly.

1. Disconnect the flexible harness from connector CN701 on the main board assembly.
2. Remove the four screws \mathbf{N} attaching the front panel assembly on both sides of the body. Remove the front panel toward the front.

Fig. 11

Removing the Front Board (See Fig.12)

- Prior to performing the following procedure, remove the top chassis assembly and the front panel assembly.

1. Remove the four screws \mathbf{O} attaching the front board on the back of the front panel assembly and release the eight joints \mathbf{b}.

Fig. 9

Fig. 10

Removing the lifter unit (See Fig.13)

- Prior to performing the following procedure, remove the top chassis assembly and the front panel assembly.

1. Disconnect the harness from connector CN503 and CN504 on the main board.
2. Remove the four screws \mathbf{P} and detach the lifter unit from the bottom cover.

Removing the feed motor (L) (See Fig.14)

- Prior to performing the following procedure, remove the lifter unit.

1. Remove the washer attaching the clutch assembly and detach the clutch assembly from the shaft of the lifter unit.
2. Remove the two screws \mathbf{Q} attaching the feed motor (L).

Removing the feed motor (R) (See Fig.15)

- Prior to performing the following procedure, remove the lifter unit.

1. Remove the washer attaching the clutch assembly and detach the clutch assembly from the shaft of the lifter unit.
2. Remove the two screws \mathbf{R} attaching the feed motor (R).

Fig. 13

Fig. 14

Fig. 15

Removing the operation assembly

(See Fig. 16 to 19)

- Prior to performing the following procedure, remove the top chassis assembly, the front panel assembly and the lifer unit.

1. Remove the three screws S attaching the right and left brackets which fix gears on both sides of the operation assembly.
2. Remove the springs 5 and 6 from the operation assembly.
3. Disconnect the card wire from connector CN702 on the main board and remove the operation assembly.

ATTENTION: When reassembling, correctly engage the switch S561 and S562 on the main board and the right gear with the part \mathbf{c} of the operation assembly.

Fig. 16

Fig. 17

Fig. 19

Fig. 18

Removing the operation switch board

 (See Fig. 20 and 21)- Prior to performing the following procedure, remove the operation assembly.

1. Remove the six screws \mathbf{T} attaching the button panel on the operation assembly.
2. Pull out the operation switch board from inside of the button panel.

Removing the cassette mechanism assembly (See Fig.22)

- Prior to performing the following procedure, remove the top chassis.

1. Remove the four screws \mathbf{U} and the cassette mechanism assembly from the top chassis.

Fig. 20

Fig. 21

Fig. 22

Disassembly method

<Cassette mechanism assembly>
\square Removing the head amplifier board
(See Fig.1)

1. Disconnect the wire from connector CP401 on the head amplifier board.
2. Remove the screw \mathbf{A}.
3. Remove the head amplifier board in the direction of the arrow to unhook two joints a.
4. Disconnect connector CP402 on the head amplifier board from the connector board.

\square Removing the mechanism bracket

(See Fig.2)

- Prior to performing the following procedure, remove the head amplifier board.

1. Remove the four screws \mathbf{B} on the underside of the cassette mechanism assembly.

<Cassette mechanism>

- Prior to performing the following procedure, remove the head amplifier board and the mechanism bracket.

■ Removing the connector board

(See Fig.3)

1. Unsolder soldering \mathbf{b} and \mathbf{c} on the connector board.
2. Remove the three screws \mathbf{C}.
3. Remove the connector board in the direction of the arrow to unhook joint d.

Fig. 1

Fig. 2

Fig. 3

- Removing the load arm assembly

(See Fig.4)

- Prior to performing the following procedure, remove the connector board.

1. Remove the slit washer e retaining the load arm assembly.
2. Remove the spring \mathbf{g} in the load arm assembly marked joint \mathbf{f}.
3. Draw out the load arm assembly from the shaft and rotate in the direction of the arrow to remove it from the cach.

ATTENTION: The spring \mathbf{g} comes off as the load arm assembly is drawn out from the shaft.

\square Removing the sub chassis (See Fig.4)

- Prior to performing the following procedure, remove the connector board and the load arm assembly.

1. Remove the two screws \mathbf{D} attaching the sub chassis.
2. Draw out the sub chassis from the holder arm shaft in the direction of the arrow (marked joint \mathbf{h}). Remove the sub chassis from the main chassis upwards.

■Removing the cassette holder / holder arm (See Fig.5)

- Prior to performing the following procedure, remove the connector board and the load arm assembly.

1. Remove the screw \mathbf{E} attaching the cassette holder / holder arm.
2. Draw out the holder arm shaft from the sub chassis in the direction of the arrow (marked joint \mathbf{h}).
3. Disengage two joints \mathbf{i} and remove the cassette holder / holder arm.

Fig. 4

Fig. 5

■ Removing the sub motor

(See Fig. 4 and 6)

- Prior to performing the following procedure, remove the connector board and the load arm assembly.

1. Remove the slit washer \mathbf{j} and the worm gear.
2. Remove the two screws \mathbf{F}.

■Removing the play head / pinch roller assembly (twin set) (See Fig.7)

- Prior to performing the following procedure, remove the connector board, the load arm assembly and the sub chassis.

1. Remove the spring \mathbf{K} retaining the play head assembly and pull out the play head assembly.
2. Remove the two screws \mathbf{G}.
3. Remove the two slit washers I attaching the pinch roller assembly (twin set). Pull out each pinch roller assembly.

Fig. 6

Fig. 7

\square Removing the reel disc assembly (twin set) (See Fig. 8 to 10)

- Prior to performing the following procedure, remove the connector board, the load arm assembly, the sub chassis and the cassette holder / holder arm.

1. Remove the two slit washers \mathbf{m} while pushing down the reel driver on the two reel disc assemblies.
2. Pull out the two screws I from the shaft with the reel driver and the spring respectively.

■Removing the flywheel assembly (F) and (R) (See Fig. 8 and 11)

- Prior to performing the following procedure, remove the connector board, the load arm assembly, the sub chassis and the cassette holder / holder arm.

1. Remove the belt from the underside of the mechanism assembly.
2. Remove the two slit washers on the upper side of the mechanism assembly.
3. Pull out the flywheel assembly (F) and (R) from underside of the mechanism assembly.

Removing the reel disc board

(See Fig.11)

1. From the underside of the mechanism assembly, unsolder soldering o on the reel disc board.
2. Unbend the joint hook \mathbf{p} retaining the reel disc board.
3. Remove the screw \mathbf{H}.

■Removing the motor (See Fig.8and 11)

1. Unsolder soldering \mathbf{q} on the motor.
2. Remove the belt from the underside of the mechanism assembly.
3. Remove the two screws I from the underside of the mechanism assembly.

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Adjustment method

- Test Instruments reqired for adjustment

1.Digital osclloscope(100MHz)
2.Frequency Counter meter
3.Electric voltmeter
4.Wow \& flutter meter
5.Test Tapes

VT724 \qquad for DOLBY level measurement

VT739 \qquad For playback frequency measurement VT712 ----For wow flutter \& tape speed measurement VT703 \qquad For head azimuth measurement
\qquad Cassette type for CTG-N (mechanism adjustment)

1 Measuring conditions(Amplifier section)

Power supply voltage \qquad DC14.4V(10.5~16V)
Load impedance --.-.-.--- 4Ω (2Speakers connection)
Line out 20k Ω

Standard volume position

Balance and Bass,Treble volume .Fader
:Center(Indication"0")
Loudness,Dolby NR,Sound,Cruise:Off
Volume position is about 2 V at speaker output with following conditions.Playback the test tape VT721.

AM mode

FM mono mode
97.9MHz/66dB,INT/400Hz,22.5kHz deviation pilot off mono.

FM stereo mode $1 \mathrm{kHz}, 67.5 \mathrm{kHz}$ dev. pilot7.5kHz dev.
Output level $\quad 0 \mathrm{~dB}(1 \mu \mathrm{~V}, 50 \Omega /$ pen terminal).

■ Tuner section
BAND STEP
FM : 100kHz (Seek), 50kHz (Manual)
AM : 9kHz step

■Preset Memory Initialization

Band	Preset Memory					
	M1	M2	M3	M4	M5	M6
FM (MHz)	87.5	89.9	97.9	105.9	108.0	87.5
$\mathrm{AM}(\mathrm{kHz})$	153	216	603	999	1404	1620

DUMMY LOAD

Exclusive dummy load should be used for AM and FM dummy load,there is a loss of 6 dB between SSG output and antenna input. The loss of 6 dB need not be considered since direct reading of figures are applied in this working standard.

■ Arrangement of Adjusting

Cassette Mechanism Section

■ Arrangment of adjusting

Head amplifier board section (Reverse side)

■ Information for using a Car Stereo service jig (for adjustment and checking)

- We are advancing efforts to make our extension cords comman for all Car Stereo products. Please use this type of extension cord as follows.
- As a U -shape type top cover is employed,this type of extension cord needed to check operation of the mechanism assembly after disassembly.
- Extension cords

EXT-KSRT002-18P(18 pin extension cord)

For connection between mechanism assembly and main board assembly.
Check for mechanism-driving section such as moter ,etc.

- Disassembly method. (Refer to mthod to remove main parts)
1.Remove the bottom cover.

2. Remove the front panel assembly.
3.Remove the top cover. (Remove the screws at each side of heat sink and rear panel)
3. Install the front panel (whose assembly was removed in step 2) to the main unit.
5.Confirm that current is being is carried by connecting an extension cord jig.

- Connection diagram

■ Extension cord list

EXTLX002-JIG: Kit including the following 8 extension parts.

No.	Parts number	Quantity	Description
1	EXTLX001-2P	2	2Pin, 30cm extension cord
2	EXTLX001-6PF	1	6Pin, 30cm flat wire
3	EXTLX001-6PC	1	6Pin $\times 2$, interlocking connector
4	EXTLX002-16PF	1	16Pin flat wire
5	EXTLX002-16PC	1	16Pin, interlocking connector
6	EXTLX002-SWPWB	1	3 switch PWB
7	EXTLX002-4P	1	4Pin, 30cm extension cord

Besides the above kit, we offer the conventional extension cord for CASSETTE mechanism which are not essential to operation check or service.
The mechanism should be directly connected to the board using the extension wire.

EXT-KSRT002-18P

Item	Conditions	Adjustment and Confirmation methods	S.Values	Adjust
1. Head azimuth adjustment	$\begin{array}{\|l} \text { Test tape: } \\ \text { SCC-1659 } \\ \text { VT703(10kHz) } \end{array}$	Head height adjustment ※ Adjust the azimuth directly. When you adjust the height using a mirror tape, remove the cassette housing from the mechanism chassis. After installing the cassette housing, perform the azimuth adjustment. 1. Load the SCC-1659 mirror tape. Adjust with height adjustment screw A and azimuth adjustment screw B so that line A of the mirror tape runs in the center between Lch and Rch in the reverse play mode. 2. After switching from REV to FWD then to REV, check that the head position set in procedure 1 is not changed. (If the position has shifted, adjust again and check.) 3. Adjust with azimuth adjustment screw B so that line B of the mirror tape runs in the center between Lch and Rch in the forward play mode. Head azimuth adjustment 1. Load VTT724 (VT724) (1 kHz) and play it back in the reverse play mode. Set the Rch output level to max. 2. Load VTT703 (VT703) (10kHz) and play it back in the forward play mode. Adjust the Rch and Lch output levels to max, with azimuth adjustment screw B. In this case, the phase difference should be within 45°. 3. Engage the reverse mode and adjust the output level to max, with azimuth adjustment screw C. (The phase difference should be 45° or more.) 4. When switching between forward and reverse modes, the difference between channels should be within 3dB. (Between FWD L and R, REV L and R.) 5. When VTT721 (VT721) $(315 \mathrm{~Hz})$ is played back, the level difference between channels should be within 1.5 dB .		is at low position B line at High position hase $\left(45^{\circ}\right)$
2. Tape speed and wow flutter confirmation	Test tape: VTT712 (3kHz)	1. Check to see if the reading of the F, counter wow flutter meter is within 3015~3045(FWD / REV), and less than 0.35% (JIS RMS). 2. In case of out of specification, adjust the motor with a built-in volume resistor.	Tape speed: 3015 $\sim 3045 \mathrm{~Hz}$ Wow flutter: less than 0.35\%	Built-in volume resistor
3. Play back frequency response confiramation	Test tape: VTT724 $(1 \mathrm{kHz})$ VTT739 $(63 \mathrm{~Hz} / 1 \mathrm{kHz} / 10 \mathrm{kHz})$	1. Play test tape VTT724, and set the volume position at 2 V . 2. Play test tape VTT739 and confirm. $1 \mathrm{kHz} / 10 \mathrm{kHz}:-1 \pm 3 \mathrm{~dB}$, $1 \mathrm{kHz} / 63 \mathrm{~Hz}: 0 \pm 3 \mathrm{~dB}$, 3. When 10 kHz is out of specification, it will be necessary to read adjust the azimuth.	Speaker out $1 \mathrm{kHz} / 63 \mathrm{~Hz}$ $: 0 \pm 3 \mathrm{db}$ $1 \mathrm{kHz} / 10 \mathrm{kHz}$:-1 $\pm 3 \mathrm{db}$	

The tuner section is of an adjustment-freedesign. In case the tuner is in trouble, replace the tuner pack.

Description of major ICs

BA4905-V3 (IC961) : Regulator

1.Pin layout

2.Block diagram

3.Pin function

Pin no.	Symbol	Function
1	RESET	If VDD voltage becomes 4V or less. RESET output becomes low level.
2	EXT output	This output voltage is approximately 0.5V lower than VCC. and max output current is 300mA.
3	COMP output	A voltage supply for ACC block. This output voltage is approximately o.7V lower than VDD'S. The max output current is 100 mA.
4	ACC	Control of the COMP output by inputting voltage.
5	VDD output	This output voltage is 5.7V, and max output current is 100mA. This voltage supply is for microcomputer. Whenever back up voltage supply is connected, the output keeps on running.
6	AUDIO output	This output voltage is 9.0 v, and max output current is 500mA. This voltage supply for AUDIO.
7	CD output	This output voltage is 8.0V, and max output current is 1A. This voltage supply for CD. Output selector of CD. AUDIO, ILM and EXT.
8	CTRL	To be connected with the BACK UP of car.
9	VCC	This output voltage is 10V, and max output current is 500mA. Output voltage is adjustable.
10	ALM output	Putting a resistance between ILM and AJ or between AJ and GND makes ILM output voltage adjustable.
12	GND	Ground.

KS-LX200R

■ CXA2510AQ (IC401) : Head AMP / Dolby

1. Pin layout \& Block diagram

2. Pin functions

Pin No.	Symbol	I/O	Functions
1	PBEQ1	O	Resistance for selecting the equalizer amplifier time constant.
2	PBOUT1	O	Playback equalizer amplifier out put.
3	Vcc	-	Power supply
4	TAPEIN1	I	TAPE input.
5	AUXIN1	I	External input.
6	MSLPF	-	Cut-off frequency adjustment of the music sensor LPF.
7	LINEOUT1	O	Line out.
8	TCH1	-	Time constant for the HLS.
9	NC	-	Non connection.
10	G2FB	-	Music signal interval detection level setting.
11	G1FB		
12	MSTC		Time constant for detecting the music signal interval.
13	DGND	-	Logic ground (Connect to GND)
14	MSUOT	O	Music sensor output.
15	NC	I	Non connection.

Pin No.	Symbol	I/O	Functions
16	NRSW	I	Dolby NR control L:NR OFF H:NR ON
17	INSW	I	Line amplifier input select control L:TAPE IN H:AUX IN
18	METAL	I	Playback equalizer amplifier control L:120us H:70us
19	DRSW	I	Head select control L:FORWARD H:REVERSE
20	FF/REW	I	Music sensor mode control Low(open):G1 High:G2
21	MSSW	I	Music sensor control Low(open):MS on High:MS OFF
22	NC	-	Non connection
23	TCH2	-	Time constant for the HLS
24	LINEOUT2	O	Line output
25	DIREF	-	Resistance for setting the reference current (Connects 20(18)K Ω between DIREF pin and GND for the standard setting.)
26	NC	-	Non connection.
27	TAPEIN2	I	TAPE input.
28	GND	-	To ground.
29	PBOUT2	O	Playback equalizer amplifier output.
30	PBEQ2	O	Resistance for selecting the playback equalizer amplifier time constant
31	PBFB2	I	Playback equalizer amplifier feedback.
32	NC	-	Non connection.
33	PBREF2	O	Playback equalizer amplifier reference (Vcc/2 output)
34	PBFIN2	I	Playback equalizer amplifier input (FORWARD head connected)
35	VCT	O	Center (Vcc/2 output)
36	PBGND	-	Playback equalizer amplifier ground (Connect to ground)
37	PBFIN1	I	Playback equalizer amplifier input (FORWARD head connected)
38	PBREF1	O	Playback equalizer amplifier reference (Vcc/2 output)
39	NC	-	Non connection.
40	PBFB1	I	Playback equalizer amplifier feedback.

■ NJM4565M-W (IC951,IC171,IC323) : Ope amp.

■ KA3031 (IC831) : Motor driver

1. Pin layout

	48	\sim	37		
1				36	
\sim					\sim
12				25	
	13	\sim	24		

2. Block diagram

3. Pin function

Pin No.	Symbol	I/O	Function	Pin No.	Symbol	I/O	Function
1	IN1.2	1	CH 1 op-amp input (-)	25	DO6.1	0	CH 6 drive outout
2	OUT1	0	CH 1 op-amp output	26	D05.2	0	CH 5 drive output
3	IN2.1	1	CH 2 op-amp input (+)	27	DO5.1	0	CH 5 drive output
4	IN2.2	1	CH 2 op-amp input (-)	28	SO4.2	0	CH 4 drive output
5	OUT2	0	CH 2 op-amp output	29	DO4.1	0	CH 4 drive output
6	IN3.1	1	CH 3 op-amp input (+)	30	PGND		Power ground
7	IN3.2	1	CH 3 op-amp input (-)	31	PGND	-	Power ground
8	OUT3	0	CH 3 op-amp output	32	DO3.2	0	CH 3 drive output
9	IN4.1	1	CH 4 op-amp input(+)	33	DO3.1	0	CH 3 drive output
10	IN4.2	1	CH 4 op-amp input (-)	34	PGND		Power ground
11	OUT4	0	CH 4 op-amp output	35	DO2.2	0	CH 2 drive output
12	CTL1	1	CH 5 motor speed control	36	SO2.1	O	CH 2 drive output
13	FWD1	1	CH 5 forward input	37	SO1.2	0	CH 1 drive output
14	REW1	1	CH 5 reverse input	38	D01.1	0	CH 1 drive output
15	CTL2	1	CH 6 motor speed control	39	PVCC2	-	Power supply voltage (For CH 1, CH 2, CH 3, CH 4)
16	FED2	1	CH 6 torward input	40	OPOUT	0	Opamp output
17	REW2	1	CH 6 reverse input	41	$\operatorname{OPIN}(-)$	1	Opamp input (-)
18	SGND	-	Signal ground	42	OPIN(+)	1	Opamp input (+)
19	MUTE1	1	CH 1 mute	43	RES50	1	Regulator 5V reset
20	MUTE2	1	CH 2 mute	44	SVCC	-	Signal supply voltage
21	MUTE3	1	CH 3 mute	45	REF	1	Bias voltage input
22	MUTE4	1	CH 4 mute	46	REG050	0	regulator 5V output
23	PVCC1	-	Power supply voltage (For CH 5, CH 6)	47	REG50	O	Regulator output
24	DO6.2	0	CH 6 drive output	48	IN1.1	1	CH 1 opamp onput (+)

BU4066BCF-X (IC322) : Switch

UPD784215AGC113 (IC701) : UNIT CPU

1.Pin layout

75			\sim	51
76				50
2				2
100				26
1	\sim	25		

2. Pin function

Pin No.	Symbol	I/O	Function
1	FF/REW	0	Output for input signal level switching for MS.
2	DOLBY	O	Dolby on "H" output.
3	MS-OUT	O	MS output.
4	F/R	1	Fwd, REV direction switch signal input.
5	HOLD	-	Non connect
6	TRAYCNT	O	Tray light control signal output.
7	DIMMER-OUT	O	Dimmer signal output.
8	LCD-POWER	-	Non connect.
9	VDD	-	Power supply terminal.
10	X2	O	Connecting the crystal oscillator for system main clock.
11	X1	1	Connecting the crystal oscillator for system main clock.
12	VSS	-	Connect to GND.
13	XT2	O	Connecting the crystal oscillator for system sub clock.
14	XT1	I	Connecting the crystal oscillator for system sub clock.
15	RESET	I	System reset signal input.
16	SW1	I	Cassette mechanism detect switch.
17	BUS-IN	I	J-BUS signal cut in input.
18	PS2	I	Power save 2.
19	CURUISE	I	CRUISE signal input.
20	RDS-SCK	I	RDS selial clock input.
21	RDS-DA	I	RDS data input.
22	REMOCON	1	Remove control signal input.
23	AVDD	-	Power supply terminal.
24	AVREF0	-	Connect to GND.
25	NC	-	Connect to GND.
26	NC	-	Connect to GND.
27	KEY0	I	Key control 0 input.
28	KEY1	I	Key control 1 input.
29	KEY2	I	Key control 2 input.
30	LEVEL	I	Level meter signal input.
31	SQ	I	S.quality level input.
32	S.METER	I	S.meter level input.
33	AVSS	-	Connect to GND.
34	W-VOL	O	Woofer volume signal output.
35	DOT CONT	0	Dot contrast signal input.
36	AVREF	-	Power supply terminal.
37	BUS-SI	I/O	J-BUS data I/O terminal.
38	BUS-SO	O	J-BUS data output.
39	BUS-SCK	I/O	J-BUS serial clock signal I/O.
40	STAGE2	1	Initial setting.
41	LCD-DA	O	Data output for LCD driver.
42	LCD-CL	O	Clock otput for LCD driver.
43	LCD-LEI	O	Chip enable 1 output for LCD driver.
44	BUZZER	O	BUZZER control signal output.
45	E2PR-DA-I	I	Data input terminal from EEPROM.
46	E2PR-DA-O	O	Data output terminal from EEPROM.
47	E2PR-CLK	I/O	Data input terminal from EEPROM.
48	BUS-I/O	I/O	J-BUS I/O signal terminal.
49	TM0	O	Tray motor negative signal output.
50	TM1	O	Tray motor positive signal output.

Pin No.	Symbol	I/O	Function
51	DM0	0	Door motor negative signal output.
52	DM1	0	Door motor positive signal output.
53	ST	I	Stereo signal input.
54	LOCAL	-	Non connect.
55	MONO	0	Manual ON/OFF select signal output.
56	CA-SW1	1	DOOR/TRAY open/close detect switch signal input.
57	CA-SW2	I	DOOR/TRAY open/close detect switch signal input.
58	CA-SW3	1	DOOR/TRAY open/close detect switch signal input.
59	CA-SW4	I	DOOR/TRAY open/close detect switch signal input.
60	CA-SW5	1	DOOR/TRAY open/close detect switch signal input.
61	VCR-CONT	-	Non connect.
62	AFCK	0	AF check output.
63	SEEK/STOP	0	AUTO SEEK/STOP select signal output.
64	SD	I	Station detector input.
65	FM/AM	0	FM/AM select signal output.
66	PLL-CE	0	Chip enable signal output.
67	PLL-DA	0	Data output.
68	PLL-CK	0	Clock signal output.
69	BAND IN	I	AM detect signal input.
70	TEL-MUTE	1	Telephone.
71	AMP KILL	-	Non connect.
72	VSS	-	Connect to GND
73	DIMMER-IN	I	DIMMER signal input.
74	DSI	1	Power save 1.
75	POWER	0	Power ON/OFF select signal output.
76	CD-ON	-	Non connect.
77	MUTE	0	Mute signal output.
78	W-LPF1	0	Woofer LPF 1 signal output.
79	W-LPF2	0	Woofer LPF 2 signal output.
80	W-MUTE	0	Woofer mute signal output.
81	VDD	-	Power supply.
82	VOL-DA	0	Data output.
83	VOL-CLK	0	Clock signal output.
84	CF-SEL	I	CF select signal input.
85	NC	-	Non connect.
86	LCD RST	0	LCD reset signal output.
87	LCD-CE2	0	Chip enable 2 output.
88	DMK	0	Motor speed control signal output.
89	TMK	0	Tray motor control signal output.
90	STAGE1	I	Initial setting.
91	MOTOR	0	Mecha Motor signal output.
92	MODE	I	Mecha mode position detection input.
93	STANDBY	I	Standby position derection input.
94	TEST	I	Test terminal
95	TAPE-IN	0	Cassette in detection input.
96	SUBMO-	0	Sub motor clock direction drive output.
97	SUBMO+		Sub motor clock oppositte direction drive output.
98	TAPE-END	I	Tape end detection input.
99	KICK	0	Kick output.
100	VOICE IN	1	Voice control signal input.

KS-LX200R

BD3860K (IC911) : E. volume

1. Pin layout

2. Block diagram

3. Pin function

Pin	Symbol	Function	Pin	Symbol	Function
N.	A2	CH2 input terminal A	23	VCA2	CH2 high frequency VCA output terminal
2	B2	CH2 input terminal B	24	LF2	CH2 low frequency filter setting terminal
3	C2	CH2 input terminal C	25	HF2	CH2 high frequency filter setting terminal
4	D2	CH2 input terminal D	26	DET2	CN2 high frequency attack release time setting
5	FIL	$1 / 2$ VCC terminal	27	NC	Non connect
6	GND	Ground terminal	28	DET1	CH1 high frequency attack release time setting
7	SI	Serial data input terminal	29	TIN1	CH1 treble input terminal
8	SC	Serial clock input terminal	30	BBOUT1	CH1 BBE II signal output terminal
9	VCC	Power supply	31	MIX1	CH1 output mix amp. negative input terminal
10	OUTR2	CH2 rear output terminal	32	VCA1	CH1 high frequency VCA output terminal
11	OUTF2	CH2 front output terminal	33	LF1	CH1 low frequency filter setting terminal
12	OUTR1	CH1 rear output terminal	34	HF1	CH1 high frequency filter setting terminal
13	OUTF1	CH1 front output terminal	35	LOUD1	CH1 loudness filter setting terminal
14	BOUT1	CH1 bus filter setting terminal	36	VIN1	CH1 main volume input terminal
15	BNF1	CH1 bus filter setting terminal	37	LOUD2	CH2 loudness filter setting terminal
16	BOUT2	CH2 bus filter setting terminal	38	VIN2	CH2 main volume input terminal
17	BNF2	CH2 bus filter setting terminal	39	SEL2	CH2 input gain output terminal
18	TNF2	CH2 treble filter setting terminal	40	SEL1	CH1 input gain output terminal
19	TNF1	CH1 treble setting terminal	41	A1	CH1 input terminal A
20	TIN2	CH2 treble input terminal	42	B1	CH1 input terminal B
21	BBOUT2	CH2 BBE II signal output terminal	43	C1	CH1 input terminal C
22	MIX2	CH2 output mix amp negative input terminal	44	D1	CH1 input terminal D

■ LA3460M-X (IC31) : FM noise canceller \& Stereo MPX demodulator

1. Pin layout

2. Block diagram

3. Pin function

Pin No.	Function	
1	Noise sense	Description
2	Noise AGC	
3	Gate time	
4	Signal hold	
5	Pilot output	Vcc $=+8.0 \mathrm{~V}$
6	Vcc	High pass filter
7	Capacitor for HCC	Stereo noise controlled voltage
8	SNC control	
9	HCC control	pilot cancel signal input
10	Lch output	pilot cancel signal outpt
11	Rch output	
12	Pican input	
13	Pican output	Ceramic resonator
14	Separation ADJ	PC
15	NC	
16	NC	Phase locked loop signal input
17	$456 k H z$ OSC	Active low
18	Phase comp LPF (+)	Phase comparator low pass filter
19	Phase comp LPF (-)	Phase comparator low pass filter
20	GND	Composite signal input
21	PLL input	
22	Stereo indicator	
23	Composite input	
24	Pilot det LPF	

LA4743B (IC941) :Power amp

1.Terminal layout

3.Pin function

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	TAB	Header of IC	14	LFIN	Front Lch input
2	GND1	Power GND	15	LRIN	Rear Lch input
3	RFO-	Output (-) for front Rch	16	ONTIME	Power on time control
4	STBY	Stand by input	17	LRO+	Output (+) for rear Lch
5	RFO+	Output (+) for front Rch	18	GND3	Power GND
6	VCC1/2	Power input	19	LRO-	Output (-) for rear Lch
7	RRO-	Output (-) for rear Rch	20	VCC3/4	Power input
8	GND2	Power GND	21	LFO+	Output (+) for front
9	RRO +	Output (+) for rear Rch	22	MUTE	Muting control input
10	R.F	Ripple filter	23	LFO-	Output (-) for front
11	RRIN	Rear Rch input	24	GND4	Power GND
12	RFIN	Front Rch input	25	NC	Non connection
13	SGND	Signal GND			

■ LC75873NW (IC601) : LCD driver

1.Block diagram

2.Pin functions

Pin No.	Symbol	I/O	Description
$1 \sim 66$	S3~S68	O	Segment Output.
$67 \sim 69$	COM1~3	O	Common Driver Output.
70	VDD	-	Power Supply Connection.
71	VDD1	I	Used for applying the LCD drive 2/3 bias voltage externally. Must be connected to VDD2 when a $1 / 2$ bias drive scheme in used.
72	VDD2	I	Used for applying the LCD drive 1/3 bias voltage externally. Must be connected to VDD1 when a $1 / 2$ bias drive scheme in used.
73	VSS	-	Power supply connection.
74	OSC	I/O	Oscillator connection. An oscillator circuit is formed by connecting an external resistor and capacitor to this pin.
75	INH	I	Display off control input.
76	$\overline{\text { CE }}$	I	Chip enable input.
77	CLOCK	I	Synchronization clock input.
78	DI	I	Serial data input.
79	S1	O	Signal output.
80	S2	O	Signal output.

KS-LX200R

BA3220FV-X (IC301) : Driver

1. Pin layout \& Block diagram

2. Pin function

in No.	Symbol	Function
1	CL+	Powe supply terminal for amp.
2	Vcc	power supply terminal.
3	INL	input terminal.
4	NFL	Negative feedback terminal.
5	FIL	Filter terminal.
6	NFR	Negative feedback terminal.
7	INR	Input terminal
8	CR+	Power supply terminal for amp.
9	CR-	Output terminal of internal amp.
10	RGND	Rch GND terminal.
11	OUTR	Rch output terminal.
12	OUTL	Lch output terminal.
13	LGND	Lch GND terminal.
14	CL-	Output terminal of internal amp.

BR24C32F-X (IC703) : EEPROM

2. Block diagram

3. Pin function

Pin No.	I/O	Functions
Vcc	-	Power supply
GND	-	Ground (OV)
AO,A1,A2	IN	Slave address set
SCL	IN	Serial clock input
SDA	I/O	Slave and word address/Serial data output
WP	IN	Write protect input

SAA6579T-X (IC51) : RDS demodulator

1. Pin layout

2. Pin function

Pin	Symbol	Function
1	QUAL	Quality indication output
2	RDDA	RDS data output
3	Vref	Reference voltage output (0.5VDDA)
4	MUX	Multiplex signal input
5	VDDA	+5V supply voltage for analog part
6	VSSA	Ground for analog part (0V)
7	CIN	Sub carrier input to comparator
8	SCOUT	Sub carrier output of reconstruction filter
9	MODE	Oscillator mode / test control input
10	TEST	Test enable input
11	VSSD	Ground for digital part (0V)
12	VDDD	+5V supply voltage for digital part
13	OSCI	Oscillator input
14	OSCO	Oscillator output
15	T57	57kHz clock signal output
16	RDCL	RDS clock output

IC-PST600M/G/-W (IC702) : System reset

■HD74HC126FP-X (IC771) : Buffer

1. Pin layout

1	\checkmark	14
		13
		12
		11
		10
		9
		8

2. Pin function

Inputs		Outputs
C	A	Y
L	X	Z
H	L	H
H	H	L

3. Block diagram

■ RPM6938-SV4 (IC602) : Remote control receiver

M5282FP-XE (IC321) : E. volume

1. Pin layout

2. Block diagram

3. Pin function

Pin No.	Symbol	Function
1	Vcc/2	Vcc/2 output for microphone amp.
2	Amp + IN	Microphone amp. positive input terminal.
3	Amp-IN	Microphone amp. negative input terminal.
4	Amp OUT	Microphone amp. output terminal.
5	GND	Ground.
6	NC	Non connection.
7	VCA IN	VCA input terminal.
8	Vc	VCA control terminal.
9	VCA OUT	VCA output terminal.
10	Vcc	Power supply.

LB1641 (IC402) : DC Motor driver

1. Pin layout

2. Pin function

Input		Output		Mode
IN1	IN2	OUT1	OUT2	
0	0	0	0	Brake
1	0	1	0	CLOCKWISE
0	1	0	1	COUNTER-CLOCKWISE
1	1	0	0	Brake

